Inverse Tension Problems and Monotropic Optimization

نویسنده

  • Çiğdem Güler
چکیده

Given a directed graph G = (N,A), a tension is a function from A to R which satisfies Kirchhoff’s law for voltages. There are two well-known tension problems on graphs. In the minimum cost tension problem (MCT), a cost vector is given and a tension satisfying lower and upper bounds is seeked such that the total cost is minimum. In the maximum tension problem (MaxT), the graph contains 2 special nodes and an arc between them. The aim is to find the maximum tension on this arc. In this study we assume that both problems are feasible and have finite optimal solutions and analyze their inverse versions under rectilinear and Chebyshev distances. In the inverse minimum cost tension problem we adjust the cost parameter to make a given feasible solution the optimum, whereas in inverse maximum tension problem the bounds of the arcs are modified. We show, by extending the results of Ahuja and Orlin [3], that these inverse tension problems are in a way ”dual” to the inverse network flows. We prove that the inverse minimum cost tension problem under rectilinear norm is equivalent to solving a minimum cost tension problem, while under unit weight Chebyshev norm it can be solved by finding a minimum mean cost residual cut. Moreover, inverse maximum tension problem under rectilinear norm can be solved as a maximum tension problem on the same graph with new arc bounds. Finally, we provide a generalization of the inverse problems to monotropic programming problems with linear costs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Qualitative Sensitivity Analysis in Monotropic Programming

Optimal selections are parameter-dependent optimal solutions of parametric optimization problems whose properties can be used in sensitivity analysis. Here we present a qualitative theory of sensitivity analysis for linearly-constrained convex separable (i.e., monotropic) parametric optimization problems. Three qualitative sensitivity analysis results previously derived for network flows are ex...

متن کامل

A Unifying Polyhedral Approximation Framework for Convex Optimization

We propose a unifying framework for polyhedral approximation in convex optimization. It subsumes classical methods, such as cutting plane and simplicial decomposition, but also includes new methods and new versions/extensions of old methods, such as a simplicial decomposition method for nondifferentiable optimization and a new piecewise linear approximation method for convex single commodity ne...

متن کامل

On a Zero Duality Gap Result in Extended Monotropic Programming

In this note we correct and improve a zero duality gap result in extended monotropic programming given by Bertsekas in [1].

متن کامل

Solving random inverse heat conduction problems using PSO and genetic algorithms

The main purpose of this paper is to solve an inverse random differential equation problem using evolutionary algorithms. Particle Swarm Algorithm and Genetic Algorithm are two algorithms that are used in this paper. In this paper, we solve the inverse problem by solving the inverse random differential equation using Crank-Nicholson's method. Then, using the particle swarm optimization algorith...

متن کامل

Inverse Optimization, Calibration and Validation of Simulation Models at the Field Scale

An overview is given of the issues of parameter estimation, model verification, and model validation as applied to field-scale subsurface flow and transport problems. We briefly review inverse optimization methods for estimating soil hydraulic parameters from a variety of field experiments, including tension disc infiltrometry, cone penetrometry, and gravity drainage experiments. An example is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008